Bharatiya ^{Vidya} R.K. SARDA VIDYA MANDIR

Session: 2022-23 (Code:041)

Maths Holiday Home Work

Class: IX

(NOTE: The assignment should be done in the Practice Notebook)

- 1. Define an rational and an irrational number. Give any 5 examples of each.
- 2. Express each of the following as vulgar fraction: 0.173
- 3. Classify the following as rational or irrational

a) $\frac{3}{5}$ b) $-\frac{2}{5}$ c) $-\sqrt{8}$ d) $\frac{3}{4\sqrt{3}}$ e) $\sqrt{6.25}$ f) $\sqrt{\frac{81}{27}}$

4. Express 0. $\overline{6} + 0.\overline{7} + 0.\overline{47}$ in the form of $\frac{p}{q}$ where p & q are integers and , q $\neq 0$

5. Express 1.32 + 0.35 in the form of $\frac{p}{q}$ where p & q are integers and , q $\neq 0$

6. Express 2.36+ 0. 23 in the form of $\frac{p}{q}$ where p & q are integers and , q \neq 0

- 7. Find two irrational numbers between 0. 111001000100001..... and 0.1101000100001
- 8. Find one rational & one irrational number between $\sqrt{3}$ and $\sqrt{5}$
- 9. Find two rational numbers between $\sqrt{3}$ and $\sqrt{5}$
- 10. Find two irrational numbers between $\sqrt{3}$ and $\sqrt{5}$
- 11. Find two irrational numbers between 0. 12 and 0.13
- 12. Prove that $2 + \sqrt{2}$ is an irrational number.
- 13. Represent $1 + \sqrt{3}$ is on number line.
- 14. Locate $\sqrt{5}$ and $\sqrt{10}$ on number line using spiral method.
- 15. Represent geometrically the following numbers on the number line: a) $\sqrt{8.7}$ b) $\sqrt{5.3}$ c) $\sqrt{6.7}$
- 16. Simplify each of the following expressions:
 - a) $4\sqrt{3} 3\sqrt{12} + 2\sqrt{75}$
 - b) $(4\sqrt{2} + 3\sqrt{3}) (4\sqrt{2} 3\sqrt{3})$
- 17. Rationalise the denominator $\frac{30}{5\sqrt{3}-3\sqrt{5}}$
- 18. Rationalise the denominator $\frac{6-4\sqrt{3}}{6+4\sqrt{3}}$
- 19. Find the rational values of a and b from each of the following:

a)
$$\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = a + b\sqrt{15}$$

b) $\frac{\sqrt{2} - \sqrt{3}}{3\sqrt{2} - 2\sqrt{3}} = a + b\sqrt{6}$
c) $\frac{4 - 3\sqrt{5}}{\sqrt{5}} = a + b\sqrt{5}$

20. Find the rational value of a and b for the given problem:

$$\frac{\sqrt{5}+1}{\sqrt{5}-1} + \frac{\sqrt{5}+1}{\sqrt{5}-1} = a + b\sqrt{5}$$

21. If
$$2^x = 5^y = 40^z$$
, then prove that $\frac{1}{z} = \frac{3}{x} + \frac{1}{y}$

- 22. Simplify: $3\sqrt{147} \frac{7}{3}\sqrt{\frac{1}{3}} + 7\sqrt{\frac{1}{3}}$
- 23. Rationalise the denominator of the following : : $\frac{1}{\sqrt{6} + \sqrt{5} \sqrt{11}}$
- 24. Rationalise the denominator of the following :: $\frac{1}{\sqrt{7} + \sqrt{6} \sqrt{13}}$

25. If $\sqrt{2}$ = 1.414, $\sqrt{3}$ = 1.732, then find the value of $\frac{4}{3\sqrt{3}-2\sqrt{2}} + \frac{3}{3\sqrt{3}-2\sqrt{2}}$ 26. Simplify $\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$ 27. Simplify $\sqrt[4]{81}$ - 8. $\sqrt[3]{216}$ + 15. $\sqrt[5]{32}$ + $\sqrt{225}$ 28. Show that: $(x^{a-b})^{a+b} \cdot (x^{b-c})^{b+c} \cdot (x^{c-a})^{c+a} = 1$ 29. Prove that: $\frac{2^{30} + 2^{29} + 2^{28}}{2^{31} + 2^{30} - 2^{29}} = \frac{7}{10}$ 30. Prove that $\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$ 31. Find the value of $\frac{1}{2}\sqrt{486} - \sqrt{\frac{27}{2}}$ 32. If x = 3 - $2\sqrt{2}$, find the value of : a) $\frac{1}{x}$ b) $x + \frac{1}{x}$ c) $x - \frac{1}{x}$ d) $\sqrt{x} + \frac{1}{\sqrt{x}}$ e) $x^2 + \frac{1}{x^2}$ f) $x^2 - \frac{1}{x^2}$ g) $x^3 + \frac{1}{x^3}$ h) $x^3 - \frac{1}{x^3}$ 33. If x = 9 + 4 $\sqrt{5}$, find the value of $\sqrt{x} - \frac{1}{\sqrt{x}}$ 34. If $x = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ and $y = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$, find the value of $x^2 + y^2$ - 6xy 35. If $y = \frac{\sqrt{a+2b} + \sqrt{a-2b}}{\sqrt{a+2b} - \sqrt{a-2b}}$, prove that $by^2 - ay + b = 0$ 36. If x = 2 + $\sqrt{3}$, find the value of (i) $x^2 + \frac{1}{x^2}$ (ii) *x* + $\frac{1}{x}$ 37. If x = 1 - $\sqrt{2}$, find the value of $\left(x - \frac{1}{x}\right)^2$ 38. Rewrite the following numbers in descending order: (i) $\sqrt[4]{9}$, $\sqrt[6]{26}$, $\sqrt[3]{5}$ (ii) $\sqrt[3]{10}$, $\sqrt[3]{36}\sqrt{3}$, $\sqrt[6]{5}$, $\sqrt[6]{60}$ 39. Which is greater: (a) $\sqrt{18} - \sqrt{10}$ or $\sqrt{12} - \sqrt{6}$ (b) $\sqrt[4]{30}$ or $\sqrt[3]{5}$ 40. Which is smaller: $\sqrt{5} - \sqrt{3}$ or $\sqrt{3} - 1$ (b) <u>∛18</u> or <u>∜40</u> 41. Which is greater 0.9 or 1? Justify 42. Insert 10 rational numbers between $\frac{1}{5}$ and $\frac{5}{7}$. 43. If $a^x = b$, $b^y = c$, $c^z = a$, Then prove that xyz = 1. 44. Express as pure surd (a) $6\sqrt{6}$ (b) $3\sqrt[3]{4}$ (c) $4\sqrt[4]{7}$ (d) $5\sqrt{7}$ 45. Express as mixed surd. (a) $\sqrt[3]{72}$ (b) $\sqrt[4]{1280}$ (d) $\sqrt{90}$ (d) $\sqrt[5]{128}$ 46. Simplify (a) $\sqrt{15} \times \sqrt{23}$ (b) $6\sqrt{3} \div 5\sqrt{2}$ (c) $\sqrt[3]{2} \times \sqrt{5}$ 47. Visualise 2.665 and 3.456 on the number line, using successive magnification. 48. Solve the following (a) $5^{x-3} \times 3^{2x-8} = 225$. (b) $2^{x+3} = 4^{x-1}$ (c) $5^{2x+1} = 6 \times 5^x - 1$.